UNIVERSIDADE DE LISBOA

Faculdade de Ciéncias
Departamento de Informatica

LISBOA

UNIVERSIDADE
DE LISBOA

DEPENDABLE DATA STORAGE WITH STATE
MACHINE REPLICATION

Marcel Henrique dos Santos

DISSERTACAO

MESTRADO EM INFORMATICA

2014

www.manaraa.com

www.manharaa.com

UNIVERSIDADE DE LISBOA

Faculdade de Ciéncias
Departamento de Informatica

LISBOA

UNIVERSIDADE
DE LISBOA

DEPENDABLE DATA STORAGE WITH STATE

MACHINE REPLICATION

Marcel Henrique dos Santos

DISSERTACAO

MESTRADO EM INFORMATICA

Disserta¢do orientada pelo Professor Doutor Alysson Neves Bessani

2014

www.manaraa.com

www.manharaa.com

Acknowledgements

I would like to thank my advisor and friend, Professor Alysson for all the help and
encouragement he provided before and during the Master’s program. I certainly would
not get this far without his advices and knowledge. I would like also to thank his wife and
my friend Cassia for the support while we were in Portugal.

I thank also my wife Fernanda for being there for me during this whole journey. She
did not think twice when I asked her to move with me to Portugal for two years to work on
the TClouds project. She also listened to me during all good and bad times I had during
these two years. My mother in law Neusa, thank you for being such a great mother for
Fernanda and also a friend to myself.

My colleagues from FCUL helped a lot during this time, with answers, ideas and even
digging with the code for problems I had. Thank you all for that. A special thanks to Vini-
cus Cogo, without whom I would not be able to deliver this dissertation. Another thanks
to Pedro Gongalves who helped me with all the invoices, expenses reports, contracts and
paperwork I needed in these two years. His dedication to his job is certainly something
that Lasige could not work without.

Finally I would like to thank all my friends and family for the support they gave me
during these years. Thank you Maycol and Cris for the review. My parents Laerte and
Wilma, thank you for the education and values you gave me, which made me get here.
My brother Vladimir and sister Evelise, thank you for being my friends and helping me
with all I needed while I was not in Brazil.

This work was supported by the EC FP7 through the project TClouds (ICT-257243)
and by FCT through project LaSIGE (PEst-OE/EEI/UI0408/2014).

1

www.manaraa.com

www.manharaa.com

To my father Laerte, for buying the IBM XT, where it all started.

www.manharaa.com

www.manharaa.com

Abstract

State Machine Replication (SMR) is a technique to replicate information across servers,
also called replicas, providing fault tolerance to services. Instead of execute in a single
server, requests from multiple clients are ordered and executed in a set of replicas. Results
are confirmed to the clients once a predefined quorum of replicas replies. Several studies
prove possible to tolerate up to f faults using 2f + 1 replicas. Byzantine Fault Tolerant
(BFT) SMR configurations, where replicas can behave in an arbitrary mode, require f
additional replicas, with the total of 3f + 1 replicas.

When a replica is detected faulty, it has to be recovered with an updated state to reduce
the vulnerability of the system. This state is generated during the service execution, when
write operations are logged. To bind the size of the log and the time to replay it, periodic
snapshots of the service state, or checkpoints, are taken and the log reset. During recovery
the checkpoint and the log are transferred from other replicas.

To provide resilience to co-related faults, information has to be logged in durable stor-
age. Synchronous writes in durable storage and constant checkpoints can affect through-
put and latency of the system as replicas have to wait for information to be stored before
reply. When a checkpoint is being taken the system cannot make progress because the
state cannot be changed. This may cause the service to be interrupted for several seconds
during a checkpoint. The state transfer to a recovering replica can also cause perturbations
in the system execution, as correct replicas has to read and transfer the state, composed
by the checkpoint, log and digests of messages in case of BFT systems.

In this dissertation we present three techniques to improve the performance of state
storage and transfer in a BFT SMR protocol - BFT-SMART. The first, Parallel Logging
stores information in the log in parallel with its execution by the application. The sec-
ond, Sequential Checkpointing makes only one replica take a checkpoint at a time, in a
round-robin fashion, allowing the system to make progress during that period. The last
technique, Collaborative State Transfer (CST) reduces the perturbation in a system dur-
ing state transfer to a recovering replica by having one replica providing the checkpoint
and the remaining providing portions of the log. We also present algorithms that address
the problem of co-related failures. When several replicas fail at the same time it is pos-
sible to start them simultaneously and compare the stored state before having the service
available again. After presenting the techniques, we provide a prototype implementation
called Dura-SMaRt with an evaluation against BFT-SMART to compare the efficiency
of the new techniques. We performed the evaluation with two applications: a consistent
key-value store — SCKV-store — and a coordination service that stores information in tuple
spaces — DepSpace.

vii

www.manaraa.com

Next, we evaluate Dura-SMaRt in a complex use, having a database replication mid-
dleware built on top of it. SteelDB, provide fault tolerance for transaction processing in
database management systems (DBMS).

Transactional databases provide durability for information systems executing oper-
ations inside boundaries called transactions. Transactions guarantee several properties,
amongst which, atomicity and isolation. Atomicity enforces that all operations executed
inside a transaction are confirmed, or none is. Isolation guarantees that operations inside
a transaction are only visible for other transactions after it is finished. Concurrency mech-
anisms implementations allow several transactions, from several clients to be executed
at the same time, improving the performance of a DBMS. To provide dependability to
DBMS, several DBMS vendors provide replications mechanisms that usually rely on the
efficiency of fail detection and recovery. Such replication mechanisms are also attached
to the vendor implementation. With SteelDB we provide transparent Byzantine fault tol-
erance with 3f + 1 replicated databases. SteelDB requires no changes in the client code
as it provides a driver implementation of the JDBC specification. Clients have only to
switch the current driver provided by the database vendor it is using to the driver provided
by SteelDB.

After describing the concepts and implementation of SteelDB we present an evalu-
ation performed on SteelDB during the last year of the FP7 TClouds project. We eval-
uated SteelDB for functional and performance aspects with a real application executing
different types of transactions and comparing results with executions on different envi-
ronments. We compared SteelDB executions in local area networks, private, public and
hybrid clouds discussing the differences in performance and efficiency of optimizations
present in the middleware.

After SteelDB evaluation we discuss the related work to state management in SMR
and database replication middlewares.

Finally we will conclude the work with a discussion on the results obtained and pur-

poses for future work.

Keywords: Dependability, Replication, Fault Tolerance, Database, Disaster Recovery

viii

www.manaraa.com

Resumo

Replicacdo de Maquina de Estados (SMR) é uma técnica para replicar informacdes
entre varios servidores, também chamados de réplicas, provendo tolerancia a faltas para
aplicacdes. Ao invés de executar os pedidos dos clientes em um unico servidor, pedidos
de varios clientes que alteram o estado de uma aplicacdao passam por um protocolo de
ordenagdo e sdo entregues na mesma ordem para um conjunto de réplicas. Os resultados
somente sdo confirmados aos clientes ap6s um quérum pré-definido de réplicas responder.
Virios estudos provaram ser possivel tolerar até f faltas com o uso de 2f + 1 réplicas.
Configuracdes para SMR com Tolerancia a Faltas Bizantinas (BFT), onde réplicas podem
apresentar comportamento arbitrario, necessitam de f réplicas adicionais, com o total de
3f + 1 réplicas.

Quando uma réplica percebe que esta atrasada em relacdo as demais, ou uma nova
réplica é adicionada ao sistema, ela precisa instalar uma a versao atualizada do estado,
para poder participar do protocolo de ordenacdo e processamento dos pedidos, restau-
rando assim a tolerancia do sistema a faltas. Réplicas geram um log das operacdes execu-
tadas para terem uma copia atualizada do estado, necessaria a uma possivel recuperagao.
As operagOes de escrita sdo armazenadas de forma sequencial no log. Para limitar seu
tamanho e o tempo para reproduzi-lo em uma réplica que estd recuperar-se, as réplicas
tiram cOpias do estado periodicamente em checkpoints e, apagam o log em seguida. Du-
rante a recuperacdo de uma réplica, o checkpoint e o log sdo transferidos pelas demais.
A réplica que estd a recuperar-se instala o checkpoint recebido e executa as operagdes do
log antes de confirmar as demais que esta pronta a processar pedidos novamente.

Para oferecer tolerancia a faltas co-relacionadas, onde vérias réplicas podem apresen-
tar falhas ao mesmo tempo, informagdes precisam ser armazenadas em midia durdvel.
Escritas sincronas em midia durdvel e checkpoints constantes podem diminuir o through-
put e aumentar a laténcia do sistema pois as réplicas precisam esperar até que a escrita seja
concluida, antes de confirmar a operacao ao cliente. De outra forma, no caso de uma falha
antes do fim da escrita, poderiamos ter dados confirmados ao cliente mas ndo armazena-
dos. Realizamos experimentos que provam que a substituicdo da midia por opgoes mais
rapidas, nomeadamente, disco rigido por SSD, apesar de diminuir o tempo de escrita
ainda afeta consideravelmente o throughput da aplicacdo.

Enquanto um checkpoint do estado € gerado, a aplicacdo ndo pode estar a processar
operacoes de escrita, pois estas podem alterar este estado. Isto faz com que o throughput
do sistema seja zero durante este periodo, que pode demorar vérios segundos, dependendo
do tamanho do estado. Conforme demonstramos através de graficos de desempenho da
aplicacdo, a transferéncia de estado a uma réplica que estd a recuperar-se pode também
causar perturbagdes nas réplicas que estao a transferi-lo, pois estas precisam ler dados em
midia durdvel e transferir o estado pela rede. Em situagdes onde o tamanho do estado

X

www.manaraa.com

¢ grande, a tranferéncia pode afectar a comunicacdo com as demais réplicas e com os
clientes.

Apresentamos neste trabalho trés técnicas puramente algoritmicas que melhoram o
desempenho no armazenamento e transferéncia de estado em um protocolo BFT SMR
chamado BFT-SMART. A primeira, Parallel Logging, faz as réplcias armazenarem as
operacoes no log em paralelo com sua execucao pela aplicagdo. Em aplicacdes onde o
tempo para se executar uma operacao € considerdvel, pode-se reduzir o tempo total ao
executar a operacao e o log em threads diferentes. A segunda, Sequential Checkpointing
faz somente uma das réplicas tirar um checkpoint por vez, sequencialmente, permitindo
ao sistema fazer progresso nesse periodo. A terceira técnica, Collaborative State Transfer
(CST) define uma estratégia para transferéncia de estado onde uma réplica envia o check-
point da aplicacdo e as demais enviam partes do log, reduzindo o efeito da transferéncia
de estado nas réplicas que estdo a envid-lo. Apresentamos também algoritmos para re-
solver o problema de faltas co-relacionadas. No caso de uma falta onde todas as réplicas
vao abaixo, € possivel fazé-las retomar o servigo e iniciar a execu¢ao novamente, apds
iniciadas.

Implementamos as novas técnicas apresentadas em um prot6tipo chamado Dura-SMaRt
para obtermos uma avaliacdo de seu efeito no desempenho de um sistema replicado. Ap-
resentamos uma avaliacdo do protétipo e do BFT-SMART com duas aplicagdes difer-
entes construidas sobre estes, uma consistent key-value store chamada SCKV-Store e um
servico de coordenacdo que utiliza um espaco de tuplos para armazenamento de dados
chamado DepSpace.

Comparamos os resultados de diversos experimentos para demonstrar que as novas
técnicas reduzem o impacto da escrita de operagdes em midia durdvel. Apresentamos
resultados que mostram que a execucdo das operacOes de escrita em paralelo com seu
armazenamento no log ndo afectam o throughput em para aplicagoes onde o tempo de
execucao de mensagens € consideravel. As novas técnicas também reduzem o impacto
que a geracdo de um checkpoint tem no throughput do sistema. Por fim demonstramos
que a transferéncia de estado tem menor impacto no throughput do sistema com as novas
técnicas quando comparadas a0 modelo anterior onde uma réplica era responsavel por

enviar o checkpoint e o log das operagoes.

De seguida, avaliamos o Dura-SMaRt em um caso de uso complexo: um middle-
ware para replicacdo de bases de dados chamado SteelDB. Este middleware utilizou o
Dura-SMaRt para replicagdo de dados, oferecendo tolerancia a faltas para transacoes em
sistemas de gerenciamento de bases de dados (DBMS).

Bases de dados transacionais fornecem durabilidade para sistemas de informag¢do ao
executar operagdes dentro de barreiras chamadas transagdes. Uma transacdo garante al-
gumas propriedades, entre as quais atomicidade e isolamento. Atomicidade implica que
todas as operagdes executadas sdo confirmadas, ou nenhuma é. Isolamento garante que

www.manaraa.com

alteracoes presentes dentro de uma transacao s6 serdo visiveis as demais ap6s o fim desta.
Estas propriedades permitem a utilizagdo da base de dados simultaneamente por varios
clientes, aumentando a concorréncia na execucao de operacoes. Para aumentar a disponi-
bilidade e recuperagdo a faltas, varios desenvolvedores de DBMS fornecem mecanismos
de replicacdo de dados. Estes mecanismos geralmente estio ligados a eficiéncia dos sis-
temas de deteccdo de falha e recuperacdo. Eles também estdo intrinsicamente ligados ao
fabricante da base de dados escolhido. Com o SteelDB nés oferecemos tolerdncia trans-
parente a faltas Byzantinas, com o uso de 3f + 1 bases de dados. O SteelDB fornece aos
clientes uma implementacdo da especificacdo JDBC, portanto, clientes que ja utilizam
um driver JDBC para aceder a uma base de dados, somente precisam trocé-lo pelo driver
fornecido pelo SteelDB.

Depois de descrever os conceitos e implementacdo do middleware SteelDB, apre-
sentamos uma avalia¢do deste, realizada no dltimo ano do projeto FP7 TClouds. Esta
avaliagdo testou diversos aspectos de desempenho e funcionalidade em uma aplicagao real
com diversos tipos de transa¢des, fornecida por um dos parceiros do projeto. Descreve-
mos a configuragcdo e execucdo do SteelDB em diversos ambientes como redes locais,
clouds privadas, publicas e hibridas. Comparamos de seguida os resultados da execugao
nestes diferentes ambientes para avaliar a eficiéncia de optimizacdes incluidas no mid-
dleware. Apesar da utilizagdo de bases locais ter desempenho consideravelmente melhor
com relacao a replicacdo com o SteelDB, bases locais ndo fornecem tolerancia a faltas.
Também demonstramos que quando o tamanho das transacdes aumenta, a diferenca en-
tre os tempos de execucdo diminui, evidenciando o custo da troca de mensagens entre
redes remotas. Otimizagdes incluidas no SteelDB, entretanto, diminuem o nimero de
mensagens necessarias por operacao, reduzindo também o seu tempo de execucao total.

Avaliamos também o desempenho do SteelDB em simulagdes com diferentes tipos
de faltas. Nos casos de teste que avaliamos, as faltas ndo afectam consideravelmente o
desempenho do SteelDB, uma vez que o protocolo de replicacdo Dura-SMaRt ndo precisa
esperar por respostas de todas as réplicas antes de confirmar as operacdes aos clientes.

Apos apresentarmos a avaliacdo do SteelDB, discutimos os trabalhos relacionados
com o gerenciamento de estado em sistemas SMR e também estudos e alternativas para
replicacao de bases de dados com o uso de SMR.

Concluimos com uma discuss@o dos resulados obtidos e propostas de trabalhos fu-

turos.

Palavras-chave: Seguranca de Funcionamento, Replicacdo, Tolerancia a Faltas, Bases

de Dados, Recuperacdo de Desastres

X1

www.manaraa.com

xii

www.manharaa.com

Contents

Figure List XV

[Table List] xvii

(I__Introduction| 1
LI CONEXT -« v o oo v e e e e e e

(I.1.1 ~ State Machine Replication| 1

(1.1.2 Durability in State Machine Replication| 2

MI3 BFT-SMART. . . . o o oottt e 2

(L2 Motivationl. e e 2

M3Goald . - o v o e e e 3

(.4 Contributionsl L 4

(1.5 Document Organization|. 5

2 Tmproving the Efficiency of Durable State Machine Replication| 7

2.1 System Model and Properties|. 7

[2.2 Identifying Performance Problems| 8

[2.2.1 High Latency of Logging|. 9

[2.2.2 Perturbations Caused by Checkpoints| 9

[2.2.3 Perturbations Caused by State Transfer] 11

2.3 Efficient Durability for SMR| 12

[2.3.1 Parallel Logging|, 12

[2.3.2 Sequential Checkpointing| 13

2.3.3 Collaborative State Transfed 14

2.4 Fmpal Remarks|. 19

3__Dura-SMaR{ 21

BT _BEFTSMART . . . o oottt e e e e e 21

[3.1.1 State Management| 22

(3.2 Implementation| 22

[3.2.1 Adding Durability to BEFT-SMART| 22

322 SCKV-storelo 23

oL fyl_llsl

www.manharaa.com

3.3 Evaluation|. 24
3.3.1 Case Studies and Workloadsl 25
[3.3.2 Experimental Environment{ 25
[3.3.3 Parallel Logging| 25
[3.3.4 Sequential Checkpointing| 27
Ilaborati Transfed 28
3.4 FmalRemarksl. oo 30
4 A Byzantine Fault-Tolerant Transactional Database| 31
4.1 Introductionl 31
4.2 Byzantium|. e 32
43 SteelDBIl Lo 33
4.3.1 Enforcing FIFOOrder| 34
4.3.2 Issues with the JDBC Specification| 35
36
37
37
38
39
39
40
44
49
6 Related Workl 51
[6.1 Durability on State Machine Replication| 51
[6.2 Database Replication| 0 0 0L, 52
(Z__Conclusion| 55
(71 Future Workl 55
Bibliograp 61
Xiv
s AJLib
www.manharaa.com

List of Figures

2.1 A durable state machine replication architecture.| 7
[2.2 Throughput of a SCKV-Store with checkpoints in memory, disk and SSD con- |
[sideringastateof IGB.| 10
[2.3 Throughput of a SCKV-Store when a failed replica recovers and asks for a state |
[transfer] L e e 12
[2.4 Checkpointing strategies (4 replicas).| 14
[2.5 Data transfer in different state transfer strategies.|. 15

[2.6 The CST recovery protocol called by the leecher after a restart. Fetch commands |

[wait for replies within a timeout and go back to step 2 if they do not complete.| . 17
[2.7 General and optimized CSTwith f =1 18
[3.1 The modularity of BFT-SMART.| 22
3.2 _The Dura-SMaRt architecture) 23

[3.3 Latency-throughput curves for several variants of the SCKV-Store and DDS con- |
| sidering 100%-write workloads of 4kB and 1kB, respectively. Disk and SSD |

[logging are always done synchronously. The legend in (a) is valid also for (b)., . 26
[3.4 SCKV-Store throughput with sequential checkpoints with different write-only |

[loadsand state size. 28
[3.5 Effect of a replica recovery on SCKV-Store throughput using CST with f = 1 |

nd differen 1zes) 29

[3.6 Effect of a replica recovery on SCKV-Store throughput using CST with f = 2 |

[and IGBstatesize] 29
4.1 The Byzantium architecture [25]] 32
4.2 The SteelDB architecture) 34
4.3 Sequence diagram of a request processinb by a SteelDB replica.| 35

[5.1 The Smart Lighting System Architecture.| 40
[5.2 Results for the performance tests-Step I.| 46
[5.3 Ratio between executing transactions 1n different architecture configura- |

[HONS) . . . o e 47
[5.4 Performance of SteelDB in the presence of failures.| 48

XV

BRE 3J|_t|5|

www.manharaa.com

www.manharaa.com

List of Tables

[2.1 Effect of logging on the SCKV-Store. Single-client minimum latency and peak |

[throughput of 4kB-writes. | 9
[3.1 1I0Zone microbenchmark on the employed disk and SSD.| 25
[5.1 Characteristics of the transactions executed during SteelDB evaluation.| 41
5.2 Results for functional tests] 45

Xvii

www.manharaa.com

www.manharaa.com

Chapter 1

Introduction

1.1 Context

Information systems with client-server architectures are a common approach to manipu-
late data since decades ago.

Although deployments with a single server can tolerate multiple requests at the same
time, they can represent a single point of failure. Problems like server crashes, network
disruption, software bugs or malicious faults can lead to the unavailability of the service
or even data corruption.

Replication is an alternative to provide resilience and availability for information sys-
tems. It allows the system to tolerate faults on a predefined number of servers, according
to the defined fault model.

1.1.1 State Machine Replication

State Machine Replication (SMR) [54] is a technique to replicate data through different
servers (replicas), providing tolerance to faults in up to a predefined number of replicas.

The SMR model requires replicas to be in the same state after executing the same set
of requests, to make possible a consistent global state [54]. To provide that, all replicas
need to start in the same state Sy and execute operations that change the state in the same
order. An additional requirement is that operations must be deterministic.

To make possible for all replicas to execute update operations in the same order, a total
order multicast [30] protocol can be used. This protocol enforces that all messages are
delivered in the same order for all participants. If, for instance, one participant receives a
sequence of messages having a message from client A after a message from client B, then
all participants will receive a sequence of messages having client B after client A.

Many systems in production use variations of this approach to tolerate crash faults
(e.g., [1L1L 112011641204 32]). Usually, in a crash fault tolerant system (CFT), the number of
replicas required to tolerate f crash faults is 2 f + 1. Some works shows that it is possible
to reduce this number using some assumptions. Research systems have also shown that

www.manaraa.com

Chapter 1. Introduction 2

SMR can be employed to tolerate Byzantine faults [43]] with reasonable costs. Usually
Byzantine fault tolerant (BFT) systems require 3 f + 1 replicas to tolerate f faults (e.g.,
(13,117, 29,136, 40, 159, 58]). A system with Byzantine faults presents arbitrary behavior,
not only crashing or delaying messages but also corrupting its local state or presenting

incorrect or inconsistent output.

1.1.2 Durability in State Machine Replication

The state transfer protocol is a protocol where correct replicas in a SMR system provide
an updated version of the application state to a new or recovering replica. After receiving
the current state, the replica can update itself and be able to participate in the system,
restoring or increasing the fault tolerance threshold.

A common approach for replicas to manage state is to store the sequence of update
messages in a log, transferring the log to a replica when it requests the current state. To
bound the size of the log and reduce the number or operations to be executed during a
recover, checkpoints of the application state can be taken. When a replica requests the
current state, the others transfer the last checkpoint taken plus the log of messages to be

replayed.

1.1.3 BFT-SMART

BFT-SMART [8]] is a Byzantine Fault Tolerant State Machine Replication library that
started to be developed in 2007 to implement a BFT total order multicast protocol for the
replication layer of the DepSpace coordination service [9]. In 2009 the development was
ramped to implement a complete BFT replication library.

BFT-SMART was developed using the Java language and offers a small and clear API
to build clients and services on top of it. BFT-SMART was designed from the beginning
with some principles intended to provide a robust yet efficient BFT SMR library. To ease
the utilization from clients, it provides a simple and extensible API with methods for
clients to invoke operations on a service. On the server side the library provide several
classes that can be extended to perform different operations like execution of ordered and
unordered requests, batch of ordered requests and state management.

1.2 Motivation

Durable state management is commonly overlooked in several SMR studies. State size
may be too small to be considered or studies focuses on performance of fault free execu-
tions disregarding state transfer protocols.

The integration of durability techniques — logging, checkpointing, and state transfer —
with the SMR approach can be difficult [16]. First of all, these techniques can drastically

www.manaraa.com

Chapter 1. Introduction 3

decrease the performance of a serviceﬂ In particular, synchronous logging can make the
system throughput as low as the number of appends that can be performed on the disk per
second, typically just a few hundreds [39]. Although the use of SSDs can alleviate the
problem, it cannot solve it completely (see Section [2.2)). Additionally, checkpointing re-
quires stopping the service during this operation [[13}116], unless non-trivial optimizations
are used at the application layer, such as copy-on-write [16, [17]. Moreover, recovering
faulty replicas involves running a state transfer protocol, which can impact normal exe-
cution, as correct replicas need to transmit their state.

Second, these durability techniques can complicate the programming model. In the-
ory, SMR requires only that the service exposes an execute() method, called by the repli-
cation library when an operation is ready to be executed. However this leads to logs that
grow forever, so in practice the interface has to support service state checkpointing. Two
simple methods can be added to the interface, one to collect a snapshot of the state and an-
other to install it during recovery. This basic setup defines a simple interface, which eases
the programming of the service, and allows a complete separation between the replication
management logic and the service implementation. However, this interface can become
much more complex, if certain optimizations are used (see Section [2.2).

SMR implementations usually uses as applications key-value stores or even simpler
test cases like counters. While such applications may be useful to evaluate aspects like
latency and throughput, in practice they do not require complex or large states to be taken
and stored by the service. Clients with concurrent executions of transactions and multiple
sessions constitute a complex exercise to attest the functionality of the state management
protocol.

1.3 Goals

This dissertation presents new techniques for implementing data durability in crash and
Byzantine fault-tolerant (BFT) SMR services. These techniques are transparent with re-
spect to both the service being replicated and the replication protocol, so they do not
impact the programming model; they greatly improve the performance in comparison to
standard techniques; they can be used in commodity servers with ordinary hardware con-
figurations (no need for extra hardware, such as disks, special memories or replicas); and,
they can be implemented in a modular way, as a durability layer placed in between the
SMR library and the service.

The techniques are three: parallel logging, for diluting the latency of synchronous
logging; sequential checkpointing, to avoid stopping the replicated system during check-

'The performance results presented in the literature often exclude the impact of durability, as the authors
intend to evaluate other aspects of the solutions, such as the behavior of the agreement protocol. Therefore,
high throughput numbers can be observed (in req/sec) since the overheads of logging/checkpointing are not
considered.

www.manaraa.com

Chapter 1. Introduction 4

points; and collaborative state transfer, for reducing the effect of replica recoveries on
the system performance. This is the first time that the durability of fault-tolerant SMR
is tackled in a principled way with a set of algorithms organized in an abstraction to be
used between SMR protocols and the application.

The proposed techniques were implemented in a durability layer on the BFT-SMART
state machine replication library [8], on top of which we built two typical SMR-based
services: a consistent key-value store (SCKV-Store) and a non-trivial BFT coordination
service (Durable DepSpace). Our experimental evaluation shows that the proposed tech-
niques can remove most of the performance degradation due to the addition of durability.

Furthermore, we implemented a complex system in which our novel techniques were
employed: SteelDB, a database replication middeware allows replication of database
management systems requiring no changes in the client or server codebase. SteelDB
efficiently manages state transfer through database replicas requiring no changes in the
BFT-SMART library. It also does not require knowledge of database internals, using
only common database dumps to manage snapshots of the state plus information on open
sessions to keep open connections.

1.4 Contributions

This dissertation presents the following contributions:

1. A description of the performance problems affecting durable state machine replica-
tion, often overlooked in previous works;

2. Three new algorithmic techniques for removing the negative effects of logging,
checkpointing and faulty replica recovery from SMR, without requiring more re-
sources, specialized hardware, or changing the service code;

3. An analysis showing that exchanging disks by SSDs neither solves the identified
problems nor improves our techniques beyond what is achieved with disks;

4. The description of an implementation these techniques in BFT-SMART, and an
experimental evaluation under write-intensive loads, highlighting the performance
limitations of previous solutions and how our techniques mitigate them;

5. The implementation of database replication middleware on top of BFT-SMART,
with efficient and durable state management. After that we present an experimental
evaluation of the middleware with replicas in public and private clouds, providing
fault tolerance to typical database systems including disaster recovery.

Portions of this work were published both in conferences and project deliverables
(4, 7, 146]].

www.manaraa.com

Chapter 1. Introduction 5

1.5 Document Organization

This document is organized as follows:

Chapter 2] discusses the problems encountered by dealing with the state management
in state machine replication protocols. It demonstrates that taking checkpoints and logs
and dealing with state transfer can affect the performance of a system. It also proposes
three new techniques to alleviate the cost of state management.

Chapter (3| describes the implementation of the new techniques over BFT-SMART in
a prototype we called Dura-SMaRt. We present the architecture created for the durability
layer included and a brief description of the services implemented. After that we evaluate
the new techniques showing how they can improve the performance in state management
while providing durability to SMR.

Chapter [describes the effort made to create a complex service (SteelDB) on top
of the durable BFT-SMART using the techniques described and providing durability for
database management systems.

Chapter [5] describes the evaluation of SteelDB. It describes the environment and re-
sults achieved replicating a database management system over public and private clouds.

Chapter|[6|discusses the related work performed in the area of state machine replication
and state management. More specifically, it discusses how previous works dealt with state
management and how our work can improves what was done. We also discuss previous
works on database replication middleware and common issues faced during the design
and implementation of such systems.

Chapter [/| concludes this work with an overview of the work that was done and the
issues we had to deal during the execution. It will also point out possible ideas to be
explored in the future.

www.manaraa.com

Chapter 1. Introduction 6

www.manharaa.com

Chapter 2

Improving the Efficiency of Durable
State Machine Replication

This chapter presents the durable SMR model, and then analyzes the effect of durability
mechanisms on the performance of the system. We start by discussing the several perfor-
mance problems that the creation of checkpoints and logs can cause. Also we will discuss
the effect of a state transfer in the execution of operations by replicas. After that we will
propose algorithms to alleviate the cost of state management while providing durability
to the system.

2.1 System Model and Properties

We follow the standard SMR model [54]. Clients send requests to invoke operations on
a service, which is implemented in a set of replicas (see Figure 2.I). Operations are
executed in the same order by all replicas, by running some form of agreement protocol.
Service operations are assumed to be deterministic, so an operation that updates the state
(abstracted as a write) produces the same new state in all replicas. The state required for
processing the operations is kept in main memory, just like in most practical applications
for SMR [11} 116, 32].

log+
ckpt

Client App. service
— . setState
execute getState |

SMR Client Side ESINE) SMR Server Side _Mg{ﬁ ‘

N\ ckpt

Figure 2.1: A durable state machine replication architecture.

The replication library implementing SMR has a client and a server side (layers at
the bottom of the figure), which interact respectively with the client application and the
service code. The library ensures standard safety and liveness properties [13, 42], such as

7

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 8

correct clients eventually receive a response to their requests if enough synchrony exists
in the system.

SMR is built under the assumption that at most f replicas fail out of a total of n
replicas (we assume n = 2f + 1 on a crash fault-tolerant system and n = 3f + 1 on a
BFT system). A crash of more than f replicas breaks this assumption, causing the system
to stop processing requests as the necessary agreement quorums are no longer available.
Furthermore, depending on which replicas were affected and on the number of crashes,
some state changes may be lost. This behavior is undesirable, as clients may have already
been informed about the changes in a response (i.e., the request completed) and there is
the expectation that the execution of operations is persistent.

To address this limitation, the SMR system should also ensure the following property:

Durability: Any request completed at a client is reflected in the service state
after a recovery.

Traditional mechanisms for enforcing durability in SMR-based main memory databases
are logging, checkpointing and state transfer [[16}26]. A replica can recover from a crash
by using the information saved in stable storage and the state available in other replicas. It
is important to notice that a recovering replica is considered faulty until it obtains enough
data to reconstruct the state (which typically occurs after state transfer finishes).

Logging writes to stable storage information about the progress of the agreement pro-
tocol (e.g., when certain messages arrive in Paxos-like protocols [[16} 35]) and about the
operations executed on the service. Therefore, data is logged either by the replication
library or the service itself, and a record describing the operation has to be stored before
areply is returned to the client.

The replication library and the service code synchronize the creation of checkpoints
with the truncation of logs. The service is responsible for generating snapshots of its
state (method getState) and for setting the state to a snapshot provided by the replication
library (method setState). The replication library also implements a state transfer protocol
to initiate replicas from an updated state (e.g., when recovering from a failure or if they
are too late processing requests), akin to previous SMR works [13| [14, [16} [17, 52]. The
state is fetched from the other replicas that are currently running.

2.2 Identifying Performance Problems

This section discusses performance problems caused by the use of logging, checkpointing
and state transfer in SMR systems. We illustrate the problems with a consistent key-value
store (SCKV-Store) implemented using BFT-SMART [8]]. In any case, the results in the
chapter are mostly orthogonal to the fault model and also affect systems subject to only
crash faults. We consider write-only workloads of 8-byte keys and 4kB values, in a key

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 9

space of 250k keys, which creates a service state size of 1GB in 4 replicas. A complete
description of our experimental environment appears in Section [3.3.2]

2.2.1 High Latency of Logging

As mentioned in Section [2.1} events related to the agreement protocol and operations that
change the state of the service need to be logged in stable storage. Table[2.T]illustrates the
effects of several logging approaches on the SCKV-Store, with a client load that keeps a
high sustainable throughput:

] Metric \ No log \ Asynchronous \ Synchronous SSD \ Synchronous Disk ‘
Minimun Latency (ms) 1.98 2.16 2.89 19.61
Peak Throughput (ops/s) | 4772 4312 1017 63

Table 2.1: Effect of logging on the SCKV-Store. Single-client minimum latency and peak
throughput of 4kB-writes.

The table shows that synchronousﬂ logging to disk can cripple the performance of such
system. To address this issue, some works have suggested the use of faster non-volatile
memory, such as flash memory solid state drives (SSDs) or/in NVCaches [52]]. As the
table demonstrates, there is a huge performance improvement when the log is written
synchronously to SSD storage, but still only 23% of the “No log” throughput is achieved.
Additionally, by employing specialized hardware, one arguably increases the costs and
the management complexity of the nodes, especially in virtualized/cloud environments
where such hardware may not be available in all machines.

There are works that avoid this penalty by using asynchronous writes to disk, allowing
replicas to present a performance closer to the main-memory system (e.g., Harp [44] and
BFS [13]]). The problem with this solution is that writing asynchronously does not give
durability guarantees if all the replicas crash (and later recover), something that produc-
tion systems need to address as correlated failures do happen [21} 24} 47, 53]].

We would like to have a general solution that makes the performance of durable sys-
tems similar to pure memory systems, and that achieves this by exploring the logging
latency to process the requests and by optimizing log writes.

2.2.2 Perturbations Caused by Checkpoints

Checkpoints are necessary to limit the log size, but their creation usually degrades the
performance of the service. Figure shows how the throughput of the SCKV-Store is
affected by creating checkpoints at every 200k client requests. Taking a snapshot after
processing a certain number of operations, as proposed in most works in SMR (e.g., [13,

'Synchronous writes are optimized to update only the file contents, and not the metadata, using the rwd
mode in the Java’ RandomAccessFile class (equivalent to using the 0_DSYNC flag in POSIX open). This is
important to avoid unnecessary disk head positioning.

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 10

42]]), can make the system halt for a few seconds. This happens because requests are no
longer processed while replicas save their state. Moreover, if the replicas are not fully
synchronized, delays may also occur because the necessary agreement quorum might not
be available.

o =~ N W »H

100 150
Time (seconds)

Throughput (Kops/sec)

Figure 2.2: Throughput of a SCKV-Store with checkpoints in memory, disk and SSD considering
a state of 1GB.

The figure indicates an equivalent performance degradation for checkpoints written in
disk or SSD, meaning that there is no extra benefit in using the latter (both require roughly
the same amount of time to synchronously write the checkpoints). More importantly,
the problem occurs even if the checkpoints are kept in memory, since the fundamental
limitation is not due to storage accesses (as in logging), but to the cost to serialize a large
state (1 GB).

Often, the performance decrease caused by checkpointing is not observed in the liter-
ature, either because no checkpoints were taken or because the service had a very small
state (e.g., a counter with 8 bytes) [13} [18} 29, 136} 140, 59, 58]]. Most of these works
were focusing on ordering requests efficiently, and therefore checkpointing could be dis-
regarded as an orthogonal issue. Additionally, one could think that checkpoints need only
to be created sporadically, and therefore, their impact is small on the overall execution.
We argue that this is not true in many scenarios. For example, the SCKV-Store can pro-
cess around 4700 4kB-writes per second, which means that the log can grow at the rate of
more than 1.1 GB/min, and thus checkpoints need to be taken rather frequently to avoid
outrageous log sizes. Leader-based protocols, such as those based on Paxos, have to log
information about most of the exchanged messages, contributing to the log growth. Fur-
thermore, recent SMR protocols require frequent checkpoints (every few hundred opera-
tions) to allow the service to recover efficiently from failed speculative request ordering
attempts [29, 36, 40].

Some systems use copy-on-write techniques for doing checkpointing without stop-
ping replicas (e.g., [[17]), but this approach has two limitations. First, copy-on-write may
be complicated to implement at application level in non-trivial services, as the service
needs to keep track of which data objects were modified by the requests. Second, even if
such techniques are employed, the creation of checkpoints still consumes resources and
degrades the performance of the system. For example, writing a checkpoint to disk makes

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 11

logging much slower since the disk head has to move between the log and checkpoint
files, with the consequent disk seek times. In practice, this limitation could be addressed
in part with extra hardware, such as by using two disks per server.

Another technique to deal with the problem is fuzzy snapshots, used in ZooKeeper [32]].
A fuzzy snapshot is essentially a checkpoint that is done without stopping the execution
of operations. The downside is that some operations may be executed more than once
during recovery, an issue that ZooKeeper solves by forcing all operations to be idempo-
tent. However, making operations idempotent requires non-trivial request pre-processing
before they are ordered, and increases the difficulty of decoupling the replication library
from the service [32, 35]].

We aim to have a checkpointing mechanism that minimizes performance degradation
without requiring additional hardware and, at the same time, keeping the SMR program-
ming model simple.

2.2.3 Perturbations Caused by State Transfer

When a replica recovers, it needs to obtain an updated state to catch up with the other
replicas. This state is usually composed of the last checkpoint plus the log up to some
request defined by the recovering replica. Typically, (at least) another replica has to spend
resources to send (part of) the state. If checkpoints and logs are stored in a disk, delays
occur due to the transmission of the state through the network but also because of the
disk accesses. Delta-checkpoint techniques based, for instance, on Merkle trees [13]]
can alleviate this problem, but cannot solve it completely since logs have always to be
transferred. Moreover, implementing this kind of technique can add more complexity to
the service code.

Similarly to what is observed with checkpointing, there can be the temptation to dis-
regard the state transfer impact on performance because it is perceived to occur rarely.
However, techniques such as replica rejuvenation [31] and proactive recovery [13} 156]
use state transfer to bring refreshed replicas up to date. Moreover, reconfigurations [43]]
and even leader change protocols (that need to be executed periodically for resilient BFT
replication [[18]) may require replicas to synchronize themselves [13},55]. In conclusion,
state transfer protocols may be invoked much more often than when there is a crash and a
subsequent recovery.

Figure [2.3] illustrates the effect of state transmission during a replica recovery in a
4 -node BFT system using the PBFT’s state transfer protocol [13]. This protocol requires
just one replica to send the state (checkpoint plus log) — similarly to crash FT Paxos-based
systems — while others just provide authenticated hashes for state validation (as the sender
of the state may suffer a Byzantine fault). The figure shows that the system performance
drops to less than 1/3 of its normal performance during the 30 seconds required to com-
plete state transfer. While one replica is recovering, another one is slowed because it is

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 12

- T T T T T -
transfer transfer

started finished
| |

o =~ N W
T

0 50 100 150 200 250 300
Time (seconds)

Throughput (Kops/sec)

Figure 2.3: Throughput of a SCKV-Store when a failed replica recovers and asks for a state
transfer.

sending the state, and thus the remaining two are unable to order and execute requests
(with f = 1, quorums of 3 replicas are needed to order requests).

One way to avoid this performance degradation is to ignore the state transfer requests
until the load is low enough to process both the state transfers and normal request order-
ing [32]]. However, this approach tends to delay the recovery of faulty replicas and makes
the system vulnerable to extended unavailability periods (if more faults occur). Another
possible solution is to add extra replicas to avoid interruptions on the service during re-
covery [S6l]. This solution is undesirable as it can increase the costs of deploying the
system.

We would like to have a state transfer protocol that minimizes the performance degra-

dation due to state transfer without delaying the recovery of faulty replicas.

2.3 Efficient Durability for SMR

In this section we present three techniques to solve the problems identified in the previous
section.

2.3.1 Parallel Logging

Parallel logging has the objective of hiding the high latency of logging. It is based on
two ideas: (1) log groups of operations instead of single operations; and (2) process the
operations in parallel with their storage.

The first idea explores the fact that disks have a high bandwidth, so the latency for
writing 1 or 100 log entries can be similar, but the throughput would be naturally increased
by a factor of roughly 100 in the second case. This technique requires the replication
library to deliver groups of service operations (accumulated during the previous batch
execution) to allow the whole batch to be logged at once, whereas previous solutions
normally only provide single operations, one by one. Notice that this approach is different
from the batching commonly used in SMR [[13} 18, |40], where a group of operations is

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 13

ordered together to amortize the costs of the agreement protocol (although many times
these costs include logging a batch of requests to stable storage [42]). Here the aim is
to pass batches of operations from the replication library to the service, and a batch may
include (batches of) requests ordered in different agreements.

The second idea requires that the requests of a batch are processed while the corre-
sponding log entries are being written to the secondary storage. Notice, however, that a
reply can only be sent to the client after the corresponding request is executed and logged,
ensuring that the result seen by the client will persist even if all replicas fail and later re-
cover. Naturally, the effectiveness of this technique depends on the relation between the
time for processing a batch and the time for logging it. More specifically, the interval
Ty, taken by a service to process a batch of k requests is given by T, = maz(Ey, L),
where F and L, represent the latency of executing and logging the batch of £k operations,
respectively. This equation shows that the most expensive of the two operations (execu-
tion or logging) defines the delay for processing the batch. For example, in the case of
the SCKV-Store, E), < Ly for any k, since inserting data in a hash table with chaining
(an O(1) operation) is much faster than logging a 4kB-write (with or without batching).
This is not the case for Durable DepSpace, which takes a much higher benefit from this
technique, as will be demonstrated in Section [3.3.3]

2.3.2 Sequential Checkpointing

Sequential checkpointing aims at minimizing the performance impact of taking replica’s
state snapshots. The key principle is to exploit the natural redundancy that exists in asyn-
chronous distributed systems based on SMR. Since these systems make progress as long
as a quorum of n — f replicas is available, there are f spare replicas in fault-free execu-
tions. The intuition here is to make each replica store its state at different times, to ensure
that n — f replicas can continue processing client requests.

We define global checkpointing period P as the maximum number of (write) requests
that a replica will execute before creating a new checkpoint. This parameter defines also
the maximum size of a replica’s log in number of requests. Although P is the same for
all replicas, they checkpoint their state at different points of the execution. Moreover, all
correct replicas will take at least one checkpoint within that period.

An instantiation of this model is for each replica? = 0, ...,n — 1 to take a checkpoint
after processing the k-th request where £ mod P = ¢ X L—ﬂ , e.g., for P = 1000, n = 4,
replica ¢ takes a checkpoint after processing requests 7 x 250, 100047 x 250, 20004-% x 250,
and so on.

Figure compares a synchronous (or coordinated) checkpoint with our technique.
Time grows from the bottom of the figure to the top. The shorter rectangles represent
the logging of an operation, whereas the taller rectangles correspond to the creation of
a checkpoint. It can be observed that synchronized checkpoints occur less frequently

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 14

I ckp |
ckp ckp ckp ckp | i ckp
ckp
[} [
E E ckp
) ckp
ckp
ckp ckp ckp ckp ckp
ReplicaO Replical Replica2 Replica3 ReplicaO Replical Replica2 Replica3
(a) Synchronized. (b) Sequential.

Figure 2.4: Checkpointing strategies (4 replicas).

than sequential checkpoints, but they stop the system during their execution whereas for
sequential checkpointing there is always an agreement quorum of 3 replicas available for
continuing processing requests.

An important requirement of this scheme is to use values of P such that the chance of
more than f overlapping checkpoints is negligible. Let C',,, be the estimated maximum
interval required for a replica to take a checkpoint and 7,,,, the maximum throughput of
the service. Two consecutive checkpoints will not overlap if:

1 P
Craz < — | =
P > nxChu X T (2.1

Equation [2.T|defines the minimum value for P that can be used with sequential check-
points. In our SCKV-Store example, for a state of 1GB and a 100% 4kB-write workload,
we have C),,,, =~ 15s and T},,, ~ 4700 ops/s, which means P > 282000. If more frequent
checkpoints are required, the replicas can be organized in groups of at most f replicas to
take checkpoints together.

2.3.3 Collaborative State Transfer

The state transfer protocol is used to update the state of a replica during recovery, by
transmitting log records (L) and checkpoints (C') from other replicas (see Figure [2.5(a)).
Typically only one of the replicas returns the full state and log, while the others may just
send a hash of this data for validation (only required in the BFT case). As showed in Sec-
tion[2.2.3] this approach can degrade performance during recoveries. Furthermore, it does
not work with sequential checkpoints, as the received state can not be directly validated
with hashes of other replicas’ checkpoints (as they are different). These limitations are
addressed with the collaborative state transfer (CST) protocol.

Although the two previous techniques work both with crash-tolerant and BFT SMR,
the CST protocol is substantially more complex with Byzantine faults. Consequently, we

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 15

[
I ! t I !
[R T — = I !
|
I
Cl "-2 "'2 L) i‘
I 1 ™ [T TR
- L L C, L L L L
-D ___________________
g _____________ C3 _______ T T T
L) L1 Y]
= 4 4 4

T
1
1
1
1
1
|
|
|
|
|
|
|
|
'
1
1
1
|
1 1
' '
' '
' '
' '
' I
' '
' '
' '
' '
' '
I '
' '
N
' '
' '
' '
' '
' '
' '
oo
' '
' '
' '
' '
' '
'hh
~
«
~
¢\

D
~
LN

C c C

ReplicaO Replical Replica2 1.t 2-nd 3-rd repioy 4th 5th 6-th
(a) PBFT and others (n = 4). (b) CST(n=7).

a

Figure 2.5: Data transfer in different state transfer strategies.

start by describing a BFT version of the protocol (which also works for crash faults) and
later, at the end of the section, we explain how CST can be simplified on a crash-tolerant
systenﬂ

We designate by leecher the recovering replica and by seeders the replicas that send
(parts of) their state. CST is triggered when a replica (leecher) starts (see Figure [2.6)). Its
first action is to use the local log and checkpoint to determine the last logged request and
its sequence number (assigned by the ordering protocol), from now on called agreement
td. The leecher then asks for the most recent logged agreement id of the other replicas,
and waits for replies until n — f of them are collected (including its own id). The ids
are placed in a vector in descending order, and the largest id available in f + 1 replicas
is selected, to ensure that such agreement id was logged by at least one correct replica
(steps 1-3).

In BFT-SMaRt there is no parallel execution of agreements, so if one correct replica
has ordered the id-th batch, it means with certainty that agreement id was already pro-
cessed by at least f + 1 correct replicaﬂ The other correct replicas, which might be
a bit late, will also eventually process this agreement, when they receive the necessary
messages.

Next, the leecher proceeds to obtain the state up to id from a seeder and the associated
validation data from f other replicas. The active replicas are ordered by the freshness
of the checkpoints, from the most recent to the oldest (step 4). A leecher can make this
calculation based on ¢d, as replicas take checkpoints at deterministic points, as explained
in Section [2.3.2] We call the replica with i-th oldest checkpoint the i-th replica and the
checkpoint C;. The log of a replica is divided in segments, and each segment L; is the
portion of the log required to update the state from C; to the more recent state C;_;.

2Even though crash fault tolerance is by far more used in production systems, our choice is justified
by two factors. First, the subtleties of BFT protocols require a more extensive discussion. Second, given
the lack of a stable and widely-used open-source implementation of a crash fault tolerance SMR library, we
choose to develop our techniques in a BFT SMR library, so the description is in accordance to our prototype.

3If one employs protocols such as Paxos/PBFT, low and high watermarks may need to be considered.

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 16

Therefore, we use the following notion of equivalence: C;_; = C; + L;. Notice that L,
corresponds to the log records of the requests that were executed after the most recent
checkpoint C (see Figure[2.5(b)|for n = 7).

The leecher fetches the state from the (f + 1)-th replica (seeder), which comprises the
log segments L, ..., Ly, and checkpoint C's; (step 8). To validate this state, it also gets
hashes of the log segments and checkpoints from the other f replicas with more recent
checkpoints (from the 1* until the f-th replica) (step 6a). Then, the leecher sets its state
to the checkpoint and replays the log segments received from the seeder, in order to bring
up to date its state (steps 10 and 12a).

The state validation is performed by comparing the hashes of the f replicas with the
hashes of the log segments from the seeder and intermediate checkpoints. For each replica
1, the leecher replays L;,; to reach a state equivalent to the checkpoint of this replica.
Then, it creates an intermediate checkpoint of its state and calculates the corresponding
hash (steps 12a and 12b). The leecher finds out if the log segments sent by the seeder and
the current state (after executing L;,,) match the hashes provided by this replica (step
12c¢).

If the check succeeds for f replicas, the reached state is valid and the CST protocol
can finish (step 13). If the validation fails, the leecher fetches the data from the (f + 2)-
th replica, which includes the log segments L, ..., Ly, o and checkpoint C,, (step 13
goes back to step 8). Then, it re-executes the validation protocol, considering as extra
validation information the hashes that were produced with the data from the (f + 1)-th
replica (step 9). Notice that the validation still requires f + 1 matching log segments and
checkpoints, but now there are f + 2 replicas involved, and the validation is successful
even with one Byzantine replica. In the worst case, f faulty replicas participate in the
protocol, which requires 2f + 1 replicas to send some data, ensuring a correct majority

and at least one valid state (log and checkpoint).

In the scenario of Figure 2.5(b)| the 3" replica (the (f + 1)-th replica) sends L,
Ly, Ls and C3, while the 2" replica only transmits HL; = H(L,), HL, = H(L;) and
HCy = H(Cy), and the 1* replica sends HL, = H(L,) and HC; = H(C}). The leecher
next replays L3 to get to state C5 + L3, and takes the intermediate checkpoint C, and
calculates the hash HCY, = H(C}%). If HC", matches HC from the 2" replica, and the
hashes of log segments Ly and L, from the 3" replica are equal to HL, and HL; from
the 2" replica, then the first validation is successful. Next, a similar procedure is applied
to replay L, and the validation data from the 1% replica. Now, the leecher only needs to

replay L; to reach the state corresponding to the execution of request id.

While the state transfer protocol is running, replicas continue to create new check-
points and logs since the recovery does not stop the processing of new requests. There-
fore, they are required to keep old log segments and checkpoints to improve their chances
to support the recovery of a slow leecher. However, to bound the required storage space,

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 17

1. Look at the local log to discover the last executed agreement;

2. Fetch the id of the last executed agreement from n — f replicas (including itself) and save the
identifier of these replicas;

3. id = largest agreement id that is available in f + 1 replicas;

4. Using id, P and n, order the replicas (including itself) with the ones with most recent checkpoints
first;

5. V « (; // the set containing state and log hashes
6. Fori=1to f do:
(a) FetchV; = (HLq,...,HL;, HC;) from i-th replica;
b) V«Vu{Vi};
7. r < f+ 1; // replica to fetch state
8. Fetch S, = (Lq, ..., L, C,) from r-th replica;
9. V« VU{(H(S;.L1), ..., H(S,.L.),H(S,.C:)) };
10. Update state using S,..C,;
11. v < 0; // number of validations of .S,
12. Fort =1 —1downto 1 do:
(a) Replay log S,.L;;1;
(b) Take checkpoint C} and calculate its hash HC/;
(c) If(V;.HL,. ;, =V,..HL, ;) AN(V;.HC; = HC)), v + +;

13. If v > f, replay log S,..L; and return; Else, r + + and go to 8;

Figure 2.6: The CST recovery protocol called by the leecher after a restart. Ferch commands wait
for replies within a timeout and go back to step 2 if they do not complete.

these old files are eventually removed, and the leecher might not be able to collect enough
data to complete recovery. When this happens, it restarts the algorithm using a more re-
cent request id (a similar solution exists in all other state state transfer protocols that we
are aware of, e.g., [13,16]).

The leecher observes the execution of the other replicas while running CST, and stores
all received messages concerning agreements more recent than ¢d in an out-of-context
buffer. At the end of CST, it uses this buffer to catch up with the other replicas, allowing
it to be re-integrated in the state machine.

Correctness. We present here a brief correctness argument of the CST protocol. As-
sume that b is the actual number of faulty (Byzantine) replicas (lower or equal to f) and r
the number of recovering replicas.

In terms of safety, the first thing to observe is that CST returns if and only if the state
is validated by at least f + 1 replicas. This implies that the state reached by the leecher at
the end of the procedure is valid according to at least one correct replica. To ensure that

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 18

L 1 L 1 Ll L 1 "'1 Ll
C1 I — — Cl T 1
o —< Z o =2 2
e T e IR O
C, , (0% y
3 =3
G G
1-streplica 2-nd replica 3-rd replica 1-streplica 2-nd replica 3-rd replica
(a) General CST. (b) Optimized CST.

Figure 2.7: General and optimized CST with f = 1.

this state is recent, the largest agreement ¢d that is returned by f + 1 replicas is used.

Regarding liveness, there are two cases to consider. If b + r < f, there are still n — f
correct replicas running and therefore the system could have made progress while the r
replicas were crashed. A replica is able to recover as long as checkpoints and logs can be
collected from the other replicas. Blocking is prevented because CST restarts if any of the
Fetch commands fails or takes too much time. Consequently, the protocol is live if correct
replicas keep the logs and checkpoints for a sufficiently long interval. This is a common
assumption for state transfer protocols. If b + r > f, then there may not be enough
replicas for the system to continue processing. In this case the recovering replica(s) will
continuously try to fetch the most up to date agreement id from n — f replicas (possibly
including other recovering replicas) until such quorum exists. Notice that a total system
crash is a special case of this scenario.

Optimizing CST for f = 1. When f = 1 (and thus n = 4), a single recovering
replica can degrade the performance of the system because one of n — f replicas will
be transferring the checkpoint and logs, delaying the execution of the agreements (as
illustrated in Figure [2.7(a)). To avoid this problem, we spread the data transfer between
the active replicas through the following optimization in an initial recovery round: the
2" replica (f + 1 = 2) sends C, plus (H Ly, HL,) (instead of the checkpoint plus full
log), while the 1% replica sends L, and HC)| (instead of only hashes) and the 3" replica
sends Lo (instead of not participating). If the validation of the received state fails, then
the normal CST protocol is executed. This optimization is represented in Figure

Simplifications for crash faults. When the SMR only needs to tolerate crash faults, a
much simpler version of CST can be employed. The basic idea is to execute steps 1-4 of
CST and then fetch and use the checkpoint and log from the 1% (most up to date) replica,
since no validation needs to be performed. If f = 1, an analogous optimization can be
used to spread the burden of data transfer among the two replicas: the 1*' replica sends

the checkpoint while the 2™ replica sends the log segment.

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 19

2.4 Final Remarks

This chapter discussed the performance problems that state management and state transfer
can cause in a state machine replication protocol. Also, it proposes algorithms that solves
the problems identified.

To provide durability in the SMR protocol, synchronous writes to stable storage would
need to be performed. That can decrease the performance of the system as synchronous
writes can take a long time to be performed and reduce the throughput of the system. We
proposed an algorithm using parallel logging to alleviate the cost of log writing. The algo-
rithm 1s composed of two parts. The first one consists of executing operations in parallel
with the log writing. The second group requests in batches before processing them. Disks
usually have a large bandwidth and a high access latency, so grouping operations can take
advantage of that.

Another problem identified was that during the generation of a checkpoint by the
replicas, the system stops to make progress as it can not process operations while it is
reading the state. If the state of the application is big enough, to write the checkpoint
to disk can take several seconds, leaving the application not responsive during the whole
process. We defined an algorithm to have replicas taking checkpoints in different instants
in time. As only one replica will be taking the checkpoint at a time, the system will have
the quorum it needs to keep processing the operations.

The final problem we identified is the perturbations caused by the state transfer. When
a replica asks the state to another replica, the replica supposed to send the state can take
a lot of time reading the state from the disk and sending it through the network. We
defined an algorithm where different replicas send parts of the state. The replica asking
for the state combines the information received and updates its state. This can reduce the
perturbation on each replica having a smaller decrease in the throughput of the system.

Next we will describe how we implemented the algorithms proposed in BFT-SMART
and the evaluations performed to assess their efficiency.

www.manaraa.com

Chapter 2. Improving the Efficiency of Durable State Machine Replication 20

www.manharaa.com

Chapter 3

Dura-SMaRt

In order to validate our techniques, we extended the open-source BFT-SMART replica-
tion library [[8] with a durability layer, placed between the request ordering and the ser-
vice. We named the resulting system Dura-SMaRt, and used it to implement two typical
SMR-based applications: a consistent key-value store and a coordination service.

In this chapter we describe the previous version of BFT-SMART and extensions made
to implement the new techniques. We also describe the two applications and the evalu-
ation performed to compare the results from the use of the new techniques with other
approaches commonly used for state management and transfer.

3.1 BFT-SMART

BFT-SMART is a BFT SMR library developed using the Java language, offering a small
and clear API to build clients and services on top of it. BFT-SMART was designed from
the beginning with some principles intended to provide a robust yet efficient library. It
provides a simple and extensible API with methods for clients to invoke operations on a
service. On the server side the library provides several classes that can be extended to
perform different operations like execution of ordered and unordered requests, batch of
ordered requests and state management.

Protocols and building blocks of BFT-SMART were planned from the beginning to
be implemented as independent modules, allowing development to focus on a specific
module at a time. BFT-SMART has different threads executing services like message
transport, ordering and execution. Executing these tasks in parallel reduces the latency
of request processing with multiple clients, as the application can execute requests while
messages from other clients are being ordered. BFT-SMART modules and their relation-
ship are in Figure[3.1]

Clients using the library has to implement API methods to invoke ordered, unordered

21

www.manaraa.com

Chapter 3. Dura-SMaRt 22

Extensible Stateyichine Replication
I

Mod-SMaRt

State

Reconfig Transfer

Reliable and Authenticated
Channels

Figure 3.1: The modularity of BFT-SMART.

or asynchronous requestsﬂ to the application. In the server side the library provides differ-
ent methods to be implemented by the application to execute the ordered and unordered
requests from the clients. These methods allows the execution of a single ordered request,
a batch of ordered requests and unordered requests. It also provides callback methods to
take and install a snapshot of the application state.

3.1.1 State Management

After a batch or requests are ordered, BFT-SMART logs it in a sequential log before
deliver it to the application. After the it is executed, the reply is returned to the client.
When a replica finds itself to be delayed in relation to other replicas or a new replica is
added to the system, it has to require a state transfer to update itself to the current state.

When a replica invokes a state transfer, it indicates a replica to send checkpoint plus
the log of operations. The remaining replicas return a digest of the checkpoint plus the
log of operations. After receiving a reply from the other replicas for the state transfer
request, the recovering replica will validate the checkpoint with the digests to guarantee
it is correct. The replica also will compare the different logs received. After install the
checkpoint and replay the log operations the replica will be ready to process requests and
participate again in the SMR protocol execution.

3.2 Implementation

3.2.1 Adding Durability to BFT-SMART

BFT-SMakRt originally offered an API for invoking and executing state machine opera-
tions, and some callback operations to fetch and set the service state. The implemented

!Ordered requests are totally ordered before delivered to the application. The client gets a reply only
after the replicas executed and logged the request. Unordered requests are delivered directly to the repli-
cas, skipping the ordering protocol. Unordered requests are not logged. Asynchronous requests may be
requested as ordered or not. The difference from the previous requests is that the reply is sent to the client
when received, without waiting for a quorum of replies.

www.manaraa.com

Chapter 3. Dura-SMaRt 23

Service
Client App. " “setState |execute pumannn |
getState | logBatch, ' KEEPEr gi
. 3T
l’”"Oke Dura-Coordinator log |~F
“execBatchl ierr. N ["°°T7T77
SMR Client Side invokeST | SStState ckp
handlerST |9 ’ 2 ‘
m > SMR Server Side "SRR

™~

Figure 3.2: The Dura-SMaRt architecture.

protocols are described in [S35] and follow the basic ideas introduced in PBFT and Aard-
vark [13, [18]. BFT-SMaRt is capable of ordering more than 80k O-byte msg/s (the 0/0
microbenchmark used to evaluate BFT protocols [29, 40]) in our environment. However,
this throughput drops to 20k and 5k msgs/s for 1kB and 4kB message sizes, respectively
(the workloads we use — see Section [3.3).

We modified BFT-SMART to expose a StateManager interface to implement differ-
ent state transfer strategies. We then moved the existing PBFT-like strategy to a Stan-
dardStateManager class and provided a new DurableStateManager class implementing
the new techniques. The application developer can use one of the state transfer strategies
defined or implement its own. The Durability layer presented in Figure [3.2] implements
the new techniques described in Section [2.3] and uses the DurableStateManager class to
handle the state transfer. Together with the changes in state transfer, we made the follow-
ing modifications on BFT-SMaRt. First, we added a new server side operation to deliver
batches of requests instead of one by one. This operation supplies ordered but not deliv-
ered requests spanning one or more agreements, so they can be logged in a single write
by the Keeper thread. Second, we implemented the parallel checkpoints and collaborative
state transfer in the Dura-Coordinator component, removing the old checkpoint and state
transfer logic from BFT-SMaRt and defining an extensible API for implementing differ-
ent state transfer strategies, as described above. Finally, we created a dedicated thread
and socket to be used for state transfer in order to decrease its interference on request
processing.

3.2.2 SCKYV-store

The first application implemented with Dura-SMaRt was a simple and consistent key-
value store (SCKV-Store) that supports the storage and retrieval of key-value pairs, alike
to other services described in the literature, e.g., [19, 48]]. The implementation of the
SCKYV-Store was greatly simplified, since consistency and availability come directly from
SMR and durability is achieved with our new layer.

www.manaraa.com

Chapter 3. Dura-SMaRt 24

In the client side we exposed a subset of the methods available in the Java utilities
interface java.util.Map. Clients can invoke operations in the replicated SCKV-Store
object as if they were using a local Map instance. In the server side the data is stored in a
java.util.TreeMap. We opted for this class instead of the HashMap to ensure that
serialized versions of the same table (containing the same key-value pairs) are equal. The
process of taking a checkpoint of the application state requires only the serialization and
deserialization of the TreeMap object.

3.2.3 Durable DepSpace (DDS)

The second use case is a durable extension of the DepSpace coordination service [9],
which originally stored all data only in memory. The system, named Durable DepSpace
(DDS) [23], provides a tuple space interface in which tuples (variable-size sequences
of typed fields) can be inserted, retrieved and removed. There are two important char-
acteristics of DDS that differentiate it from similar services such as Chubby [11] and
ZooKeeper [32]: it does not follow a hierarchical data model, since tuple spaces are, by
definition, unstructured; and it tolerates Byzantine faults, instead of only crash faults.

DDS application data is stored in a structure containing configurable depths of the
Java utilities HasMap class and a Tuple class containing the tuples. This is used to
reduce the time necessary to find a tuple in the space. As an example, if a user creates a
tuple containing <A, B, C, D, E> and has configured depth 2 in the application, the
first two fields are stored in maps. When the user searches for tuple by any of the two first
fields, the tuples are searched in the map instead of iterating over all the tuples. In the
scenario described, the tuple would be stored in a structure as HashMap (A, (HashMap

(B, Tuple<A, B, C, D, E>)).

Snapshots in DDS were implemented as a log containing one insert operation for each
tuple in the space, in this way the same code for executing the logged operations can be
used for processing snapshots. Also, as the data structure uses serializable Java classes,
it was not necessary to write additional code to serialize and deserialize the objects.

The addition of durability to DepSpace basically required the replacement of its orig-
inal replication layer by Dura-SMaRt.

3.3 Evaluation

This section evaluates the effectiveness of our techniques for implementing durable SMR
services. In particular, we devised experiments to answer the following questions: (1)
What is the cost of adding durability to SMR services? (2) How much does parallel
logging improve the efficiency of durable SMR with synchronous disk and SSD writes?
(3) Can sequential checkpoints remove the costs of taking checkpoints in durable SMR?

www.manaraa.com

Chapter 3. Dura-SMaRt 25

(4) How does collaborative state transfer affect replica recoveries for different values of
f? Question 1 was addressed in Section [1.2] so we focus on questions 2-4.

3.3.1 Case Studies and Workloads

As already mentioned, we consider two SMR-based services implemented using Dura-
SMaRt: the SCKV-Store and the DDS coordination service. Although in practice, these
systems tend to serve mixed or read-intensive workloads [19} 32], we focus on write
operations because they stress both the ordering protocol and the durable storage (disk or
SSD). Reads, on the other hand, can be served from memory, without running the ordering
protocol. Therefore, we consider a 100%-write workload, which has to be processed by
an agreement, execution and logging. For the SCKV-Store, we use YCSB [[19]] with a new
workload composed of 100% of replaces of 4kB-values, making our results comparable to
other recent SMR-based storage systems [10, 152, 60]. For DDS, we consider the insertion
of random tuples with four fields containing strings, with a total size of 1kB, creating a
workload with a pattern equivalent to the ZooKeeper evaluation [32} 35]].

3.3.2 Experimental Environment

All experiments, including the ones in Section [2.1] were executed in a cluster of 14 ma-
chines interconnected by a gigabit ethernet. Each machine has two quad-core 2.27 GHz
Intel Xeon E5520, 32 GB of RAM memory, a 146 GB 15000 RPM SCSI disk and a 120
GB SATA Flash SSD. We ran the I0zone benchmark? on our disk and SSD to understand
their performance under the kind of workload we are interested: rewrite (append) for
records of 1IMB and 4MB (the maximum size of the request batch to be logged in DDS
and SCKV-Store, respectively). The results are presented in Table

Record length Disk SSD
1IMB 96.1 MB/s 128.3 MB/s
4MB 135.6 MB/s 130.7 MB/s

Table 3.1: I0Zone microbenchmark on the employed disk and SSD.

3.3.3 Parallel Logging

Figure displays latency-throughput curves for the SCKV-Store considering several
durability variants. The figure shows that naive (synchronous) disk and SSD logging
achieve a throughput of 63 and 1017 ops/s, respectively, while a pure memory version
with no durability reaches a throughput of around 4772 ops/s.

Parallel logging involves two ideas, the storage of batches of operations in a single
write and the execution of operations in parallel with the secondary storage accesses. The

http://www.liozone.org.

www.manaraa.com

http://www.iozone.org

Chapter 3. Dura-SMaRt 26

250 ‘ ‘ ‘ ‘ 400 ‘
Naive (Disk) =——w— "
Naive (SSD) ---m-- T : H
200 Batching (Disk) e g | : PoaT
m w Par. Log (Disk) o : | 5300 HE- 7
@ Papl’. Log (SSD) --w-- i} @ :]
= ¢ | z200 :
g0l ¢ (e
© TR A
_I 50 ? --------- -~ ii - _I 100 ¢"i* 1
PRy v -
Yy ST ! werurver” f"’ e
O | me=ao:t ‘. T -V\'\] | | { | |
0 1 2 3 4 5 6 8 10 12 14 16
Throughput (Kops/sec) Throughput (Kops/sec)
(a) SCKV-Store. (b) Durable DepSpace.

Figure 3.3: Latency-throughput curves for several variants of the SCKV-Store and DDS consid-
ering 100%-write workloads of 4kB and 1kB, respectively. Disk and SSD logging are always done
synchronously. The legend in (a) is valid also for (b).

use of batch delivery alone allowed for a throughput of 4739 ops/s with disks (a 75x
improvement over naive disk logging). This roughly represents what would be achieved
in Paxos [39,142], ZooKeeper [32] or UpRight [17], with requests being logged during the
agreement protocol. Interestingly, the addition of a separated thread to write the batch of
operations, does not improve the throughput of this system. This occurs because a local
put on SCKV-Store replica is very efficient, with almost no effect on the throughput.

The use of parallel logging with SSDs improves the latency of the system by 30-50ms
when compared with disks until a load of 4400 ops/s. After this point, parallel logging
with SSDs achieves a peak throughput of 4500 ops/s, 5% less than parallel logging with
disk (4710 ops/s), with the same observed latency. This is consistent with the I0zone
results, in which the data throughput of our disk is better than SSDs for big records (see
Table 3.1). Overall, parallel logging with disk achieves 98% of the throughput of the
pure memory solution, being the replication layer the main bottleneck of the system.
Moreover, the use of SSDs neither solves the problem that parallel logging addresses, nor
improves the performance of our technique, being thus not effective in eliminating the log
bottleneck of durable SMR.

Figure [3.3(b) presents the results of a similar experiment, but now considering DDS
with the same durability variants as in SCKV-Store. The figure shows that a version of
DDS with naive logging in disk (resp. SSD) achieves a throughput of 143 ops/s (resp.
1900 ops/s), while a pure memory system (DepSpace), reaches 14739 ops/s. The use of
batch delivery improves the performance of disk logging to 7153 ops/s (a 50x improve-
ment). However, differently from what happens with SCKV-Store, the use of parallel
logging in disk further improves the system throughput to 8430 ops/s, an improvement of

www.manaraa.com

Chapter 3. Dura-SMaRt 27

18% when compared with batching alone. This difference is due to the fact that insert-
ing a tuple requires traversing many layers [9]] and the update of an hierarchical index,
which takes a non-negligible time (0.04 ms), and impacts the performance of the system
if done sequentially with logging. The difference would be even bigger if the SMR ser-
vice requires more processing. Finally, the use of SSDs with parallel logging in DDS was
more effective than with the SCKV-Store, increasing the peak throughput of the system to
9250 ops/s (an improvement of 10% when compared with disks). Again, this is consistent
with our IOzone results: we use 1kB requests here, so the batches are smaller than in
SCKV-Store, and SSDs are more efficient with smaller writes (see Table [3.1).

Notice that DDS could not achieve a throughput similar to a pure memory system.
This happens because, as discussed in Section [2.3.1] the throughput of parallel logging
will be closer to a pure memory system if the time required to process a batch of requests
is akin to the time to log this batch. In the experiments, we observed that the workload
makes BFT-SMaRt deliver batches of approximately 750 requests on average. The local
execution of such batch takes around 30 ms, and the logging of this batch on disk entails
70 ms. This implies a maximum throughput of 10.750 ops/s, which is close to the obtained
values. With this workload, the execution time matches the log time (around 500 ms)
for batches of 30K operations. These batches require the replication library to reach a
throughput of 60K 1kB msgs/s, three times more than what BFT-SMaRt achieves for this
message size.

3.3.4 Sequential Checkpointing

Figure illustrates the effect of executing sequential checkpoints in disks with SCKV-
Stor during a 3-minute execution period.

When compared with the results of Figure [2.2] for synchronized checkpoints, one can
observe that the unavailability periods no longer occur, as the 4 replicas take checkpoints
separately. This is valid both when there is a high and medium load on the service and
with disks and SSDs (not show). However, if the system is under stress (high load), it
is possible to notice a periodic small decrease on the throughput happening with both
500MB and 1GB states (Figures [3.4(a)| and [3.4(b)). This behavior is justified because at
every L%J requests one of the replicas takes a checkpoint. When this occurs, the replica

stops executing the agreements, which causes it to become a bit late (once it resumes
processing) when compared with the other replicas. While the replica is still catching
up, another replica initiates the checkpoint, and therefore, a few agreements get delayed
as the quorum is not immediately available. Notice that this effect does not exist if the

3 Although we do not show checkpoint and state transfer results for DDS, the use of our techniques
bring the same advantage as on SCKV-Store. The only noticeable difference is due to the fact that DDS local
tuple insertions are more costly than SCKV-Store local puts, which makes the variance on the throughput of
sequential checkpoints even more noticeable (especially when the leader is taking its checkpoint). However,
as in SCKV-Store, this effect is directly proportional to the load imposed to the system.

www.manaraa.com

Chapter 3. Dura-SMaRt 28

o 4 | | 5

£ £

n [%2]

< <

5 21 1 s

g e : f

> 1r High load 1 2 1 High load -

o Medium load -~ o Medium load -~~~

|'E 0]] ﬁ 0]]

0 50 100 150 0 50 100 150

Time (seconds) Time (seconds)
(a) 500MB state. (b) 1GB state.

Figure 3.4: SCKV-Store throughput with sequential checkpoints with different write-only loads
and state size.

system has less load or if there is sufficient time between sequential checkpoints to allow
replicas to catch up (“Medium load” line in Figure 3.4).

3.3.5 Collaborative State Transfer

This section evaluates the benefits of CST when compared to a PBFT-like state transfer
in the SCKV-Store with disks, with 4 and 7 replicas, considering two state sizes. In all
experiments a single replica recovery is triggered when the log size is approximately twice
the state size, to simulate the condition of Figure

Figure displays the observed throughput of some executions of a system with
n = 4, running PBFT and the CST algorithm optimized for f = 1, for states of S00MB
and 1GB, respectively. A PBFT-like state transfer takes 30 (resp. 16) seconds to deliver
the whole 1 GB (resp. S00MB) of state with a sole replica transmitter. In this period, the
system processes 741 (resp. 984) ops/sec on average. CST optimized for f = 1 divides
the state transfer by three replicas, where one sends the state and the other two up to
half the log each. Overall, this operation takes 42 (resp. 20) seconds for a state of 1GB
(resp. 500MB), 28% (resp. 20%) more than with the PBFT-like solution for the same
state size. However, during this period the system processes 1809 (resp. 1426) ops/sec
on average. Overall, the SCKV-Store with a state of 1GB achieves only 24% (or 32% for
500MB-state) of its normal throughput with a PBFT-like state transfer, while the use of
CST raises this number to 60% (or 47% for 500MB-state).

Two observations can be made about this experiment. First, the benefit of CST might
not be as good as expected for small states (47% of the normal throughput for a S00MB-
state) due to the fact that when fetching state from different replicas we need to wait for
the slowest one, which always brings some degradation in terms of time to fetch the state
(20% more time). Second, when the state is bigger (1GB), the benefits of dividing the
load among several replicas make state transfer much less damaging to the overall system

www.manaraa.com

Chapter 3. Dura-SMaRt 29

—~ [| | = —~ L | |]

8 4 transfer transfer 8 4 transfer transfer

N started finished n started finished

~~ ~~

@ 3 I @ 3 ‘

5 5

<2 X 9

2 2

< 1 < 1

cy 2

g0 20

— 50 100 150 — 50 100 150

Time (seconds) Time (seconds)

(a) 5S00MB and n = 4. (b) 1GB and n = 4.

Figure 3.5: Effect of a replica recovery on SCKV-Store throughput using CST with f = 1 and
different state sizes.

throughput (60% of the normal throughput), even considering the extra time required for
fetching the state (+28%).

We did an analogous experiment for n = 7 (see Figure [3.6) and observed that, as
expected, the state transfer no longer causes a degradation on the system throughput (both
for CST and PBFT) since state is fetched from a single replica, which is available since
n = 7 and there is only one faulty replica (see Figure [2.5). We repeated the experiment
for n = 7 with the state of 1GB being fetched from the leader, and we noticed a 65%
degradation on the throughput.

A comparable effect occurs if the state is obtained from the leader in CST. As a
cautionary note, we would like to remark that when using spare replicas for “cheap”
faulty recovery, it is important to avoid fetching the state from the leader replica (as in
(L1 116, 32, 152]) because this replica dictates the overall system performance.

8 4 | |
w0 transfer transfer
24 started fjinished
Q 3 r i N
@] |
X |
= 2 P
a W
|

5 1 PBFT - -
3 - CST —
ﬁ O)]

0 50 100

Time (seconds)

Figure 3.6: Effect of a replica recovery on SCKV-Store throughput using CST with f = 2 and
1GB state size.

www.manaraa.com

Chapter 3. Dura-SMaRt 30

3.4 Final Remarks

This section described the effort to implement the techniques proposed in Section 2] in
the BFT-SMART replication library. The current version of BFT-SMART available at
http://code.google.com/p/bft—-smart|contains the durability layer that can be acti-
vated via configuration files.

This chapter also included a detailed evaluation of the impact that the new techniques have
in the protocol performance when compared to the previous version. All three new techniques
proposed were proven effective during the evaluation performed with the two use cases - SCKV -
Store and Durable DepSpace.

We used Dura-SMaRt as the replication layer of a database replication middleware called
SteelDB, which we present next. SteelDB uses Dura-SMaRt to successfully manage communi-
cation between replicas, and also store and transfer state to recovering replicas. We did not need
to perform any changes in Dura-SMaRt code to serve as SteelDB replication layer, proving the
protocol to be robust enough to serve complex applications.

www.manaraa.com

http://code.google.com/p/bft-smart

Chapter 4

A Byzantine Fault-Tolerant
Transactional Database

4.1 Introduction

Database managements systems store and provide access to data to multiple concurrent users.
Usually, this data is stored in tables and is updated or queried using a standard query definition
language (SQL). Several different vendors and open-source projects implements DBMS products.
Such products may differ in several concepts like concurrency control, transaction management,
relationship enforcements and extra tools provided by vendors.

To manage access from concurrent users to the same database, enforcing integrity of data,
transactions are used. Transactions are boundaries applied to a group of operations executed over
a database. A transaction must enforce ACID properties (atomicity, consistency, isolation and
durability) [28]. Atomicity means that all operations must be executed or none is. In a case of
failure during the transaction, the database has to be in the same state it was before. Consistency
guarantees that all operations inside a transaction will bring the database from one valid state to
another. Constraints and relationships should be respected through the entire transaction. Isolation
expects that no change performed from inside a transaction is visible outside it until it is finished.
This is enforced by the concurrency control mechanism employed. Durability enforces that all
changes performed stays visible after the end of a transaction, even in the event of crashes and
power outages.

To isolate the operations executed inside a transaction, multi-version concurrency control
(MVCC) can be used to allow several users to execute read and write operations on values with-
out the need for serialization. Serialization [6]] of transactions usually requires locking on tables
and rows, sometimes blocking read operations without need, reducing the concurrency and per-
formance of the system. Snapshot Isolation [5], one of the isolation levels inside MVCC, manages
concurrency by taking snapshots of the state and numbering versions between changes. A write
operation, executed from inside a transaction, will update the value and increment the version
when the transaction finishes. If the value was updated from another transaction, the update fails.
When an operation reads a value, it first checks the version number of the object. When the trans-
action is about to be finished (by a commit operation), the object is checked again to validate if it
was not modified after the read.

Several commercial and open-source DBMSs from different vendors like Oracle, MySQL and
PostgreSQL employ replication to database servers. The replication schemas are designed for
the specific vendor implementation to provide resilience and availability in the presence of faults.
While this can provide availability and some degree of resilience for crash faults, the client is

31

www.manaraa.com

Chapter 4. A Byzantine Fault-Tolerant Transactional Database 32

tied to that specific vendor DBMS distribution. Also, such schema is limited by the efficiency of
mechanisms of failover/failback to detect failures and switch masters [[15]].

An alternative to that approach is the use of a database replication middleware [25} |57, [34]].
A DBMS middleware is placed between the client and the database servers. Instead of make the
request to the DBMS directly, clients request operations to the middleware that serializes requests
and forward them to multiple servers providing fault tolerance.

According to [15] a DBMS replication middleware may face several issues sometimes ne-
glected during its design. Database internals like temporary tables, and stored procedures and
also database specific idioms may difficult diverse replication with different vendors implementa-
tions and even versions. The use of non-deterministic functions like random number generators or
current timestamp may cause inconsistency between states.

4.2 Byzantium

Byzantium considers all operations executed against databases to run inside transactions. To in-
crease concurrent execution of transactions, Byzantium assumes that DBMS implementation pro-
vides snapshot isolation.

Transactions in Byzantium are flagged as read-write or read-only. By the time a transaction is
created it is considered read-only. Transactions will be promoted to read-write when the first write
message within the transaction is issued.

Byzantium is a database replication middleware tolerant to Byzantine faults. It uses PBFT
[13] as the replication library requiring 3 f 4 1 replicas to tolerate f faults. Byzantium architecture

is presented in Figure

- ' Bizantium -
Bizantium S, BFT | Replica L e
Client client | BFT | % ™__—" Repl. Froxy 'y
{pEc) Proxy ohClient g% Proxy

C‘[Proxy |5 ™ -

. I,

. - : N
A * /replicas
) ;

Bizantium \ N -
l e | [
(e Proxy b Client Y BFT e Y om
T T Proxy Repl.,|, Froxy
Froxy

Figure 4.1: The Byzantium architecture [23]].

To reduce the cost of replication, operations received in read-only transactions are sent only to
f + 1replicas. The Byzantium client waits for f replies before return the result to the client. By
the time of commit it verifies if the f replies matches the remaining reply before confirming the
transaction. If results diverge, the operation is executed in the remaining replicas to validate the
result. If f + 1 matching replies cannot be confirmed, the transaction is aborted.

Operations that occur in a read-write transaction are sent to all replicas but only executed in
one of them, the master replica. In this way the client do not need to wait for a reply quorum
to confirm the operation. During the processing of a transaction, the client will keep a list of
operations sent to the master and the results returned. By the time of commit, the client sends

www.manaraa.com

Chapter 4. A Byzantine Fault-Tolerant Transactional Database 33

the list of operations and results to all replicas that if the operations were correctly executed. If
the operations match, the replicas will execute all operations and compare the results with results
informed from the master. If the results match the commit will be confirmed. Otherwise, the
transaction will be rolled back and the client will be informed, so that it can proceed with a suspect
master operation.

Byzantium defines also a suspect master protocol to change a faulty master. When a client
notices that the master returned incorrect results or took longer than a predefined timeout to return
results, it sends a ”suspect master” message to the replicas. The replicas try then to confirm with
the master if it received the messages from the client. If confirmed that the master is faulty, the
replicas define the replica with the next id as the master and will inform the client about it. Open
transactions will be aborted and the clients will be informed about that.

Byzantium defines two versions of the protocol, called single-master and multi-master. In the
single-master version, all transactions consider the same replica to be the master. In the multi-
master protocol, at the beginning of a transaction one of the replicas is randomly selected to be the
master replica. In that case, each transaction will have a master and this master can be different
from other transactions. According to evaluation performed in the Byzantium paper [25], the
single-master performs better in read-write dominated workloads while the multi-master version
performs better in read-only dominated workloads. This may be explained by the fact that in
the multi-master version a client can choose a master in the same network it is, reducing the
communication time to the replica. As messages are executed only in the master before commit,
it will have only to send the begin and commit messages to all the replicas.

4.3 SteelDB

SteelDB is a middleware to replicate data, providing resilience for database management systems,
assuming that a predefined number of replicas can be faulty. The source code is available at
http://code.google.com/p/steeldb. SteelDB borrows some ideas from Byzantium,
like the optimistic execution of transactions in the master and the master change protocol. The
SteelDB client is a driver implementing the JDBC [33]] specification. Clients already using a
JDBC driver to execute operations in a database need only to change its configuration to use our
driver instead. Although our design uses some ideas from Byzantium, we have some differences
from it. We implemented only the single-master version of the Byzantium, as we decided to focus
our efforts in provide a functional and efficient state transfer and master change protocols. Another
difference is that Byzantium uses PBFT [13] as the replication layer, while we use BFT-SMART
to replicate data and manage state transfer.

Each replica of SteelDB is a client of a database server instance, in which it executes the
operations delivered to it. The architecture of SteelDB is presented in Figure

The clients of SteelDB implement the JDBC specification to invoke operations in BFT-SMART
service proxy. We take advantage of the use of transactions to reduce the number of messages
exchanged between clients and replicas. Unlike in Byzantium, when an operation is inside a
transaction, the client sends it only to the master replica. The master executes the operation and
returns the result to the client. When the client tries to commit the transaction, it sends the list
of operations executed and responses received during the transaction to all replicas. The replicas
execute the operations and compare the results with results returned from the master. This makes
the operations simpler to execute but pushes all the validation work to the commit operation.

When a client issues a request to SteelDB client, it is replicated to multiple servers. The
request is delivered to the replica by invoking the callback method invokeOrdered. Depending on
the type of request, it may perform different operations like open a connection to the database,
execute a query or update and commit a transaction. In the Figure [4.3] we present a sequence

www.manaraa.com

http://code.google.com/p/steeldb

Chapter 4. A Byzantine Fault-Tolerant Transactional Database 34

1
1 1
Service Replica Specific DBMS e
1 (BFT-SMaR1) Repiica 0 JoBC L —
1 1
1 1
1 1
1 Service Replica Specific DBMS | | [
B (BFT-SMaRt) Repiica 1 JDBC ; O
1
. JDBC ServiceProxy Ji BFT State Machine 1
Application SteelDB (BFT-SMaRt) Replication 1
1 (BFT-SMaRt) .
1 Service Replica Specific DBMS [S—
i (BFT-SMaR1) Replica 2 JDBC | O
1
Client Side I
g - 1
1 1
1 Service Replica Specific DBMS _I_ S—
i (BFT-SMaRY) Replica n JDBC) =
1 1
; | DBMS
[
Replica Side

Figure 4.2: The SteelDB architecture.

diagram describing the process of execute an update operation in the database and commit the
open transaction.

The processing of the request starts when the invokeOrdered callback method is in-
voked by BFT-SMART. That method checks the request and call executeUpdate in the
MessageProcessor class. That class contains methods for all operations to be executed in the
database. After MessageProcessor receives the request, it gets a ConnectionManager
from a SessionManager class. SessionManager contains a map with all open connections
from clients, along with the client identification number. The ConnectionManager contains
information about the client session, like connection parameters, the list of requests processed in
the open transaction and flags about the connection state. It also contains the JDBC Connection to
the database, in which the operations are executed.

After the client gets the ConnManager object it opens a St atement object to the database,
in which the database request is generated, using the SQL command and the parameters informed.
After the statement is filled with the information, it is executed in the database, using the database
connection.

That finishes the request execution but if the database connection is not configured as auto-
commit, it is not persisted yet. When the user performs a commit request, it follows the same path
as the executeUpdate method call, with the difference that instead of have a statement created
and executed, it calls a commit operation using the database connection.

In the following subsections we describe some relevant issues we had to address to implement
SteelDB on top of BET-SMART with the durability layer described in previous chapters.

4.3.1 Enforcing FIFO Order

All previous services developed over BFT-SMART supported simple read, write or read-write
operations, without any support for ACID transactions. In this scenario, there was no problem if
some unordered read operation arrived out of order in f replicas. This happens because the client
expects a number of replicas to execute operations and return matching results before sending its
next request.

The problem is, with a transactional protocol, if an operation within a transaction arrives at
some replica before the transaction BEGIN (or the database connection is established), it will be

www.manaraa.com

Chapter 4. A Byzantine Fault-Tolerant Trans